RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2009, том 21, выпуск 6, страницы 80–150 (Mi aa1164)

Эта публикация цитируется в 5 статьях

Статьи

Error bounds, duality, and Stokes phenomenon. I

V. P. Gurariĭab

a School of Mathematical Sciences, Monash University, Clayton, VIC, Australia
b Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia

Аннотация: We consider classes of functions uniquely determined by coefficients of their divergent expansions. Approximating a function from such a class by partial sums of its expansion, we study how the accuracy changes when we move within a given region of the complex plane. Analysis of these changes allows us to propose a theory of divergent expansions, which includes a duality theorem and the Stokes phenomenon as essential parts. In its turn, this enables us to formulate necessary and sufficient conditions for a particular divergent expansion to encounter the Stokes phenomenon. We derive explicit expressions for the exponentially small terms that appear upon crossing Stokes lines and lead to improvement in the accuracy of the expansion.

Ключевые слова: Stokes phenomenon, Poincaré's asymptotic theory, Stokes rays, Airy functions.

MSC: 30E15

Поступила в редакцию: 04.10.2009

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2010, 21:6, 903–956

Реферативные базы данных:


© МИАН, 2024