Аннотация:
Пусть $X$ – банахова решетка измеримых функций на пространстве $(S,\nu)$ однородного типа (для простоты можно считать, что это – $\mathbb R^n$ с мерой Лебега). Предположим, что решетка $X$ обладает свойством Фату. Пусть $T$ – невырожденный в некотором смысле сингулярный интегральный оператор типа Кальдерона–Зигмунда, либо максимальный оператор Харди–Литлвуда. Доказано, что ограниченность оператора $T$ на решетке $\bigl(X^\alpha\mathrm L^{1-\alpha}_1\bigr)^\beta$ при некотором $\beta\in(0,1)$ и достаточно малых $\alpha\in(0,1)$ допускает простое исчерпывающее описание в терминах решетки $X$: для всякой функции $f\in X$ существует мажоранта $g\in X$ такая, что $\log g\in\mathrm{BMO}$ с подходящими оценками норм. Это свойство называется $\mathrm{BMO}$-регулярностью. Для удобства читателя изложение сделано по возможности полным и замкнутым; приводятся формулировки и доказательства многих основных результатов теории в новой общности наряду с их уточнениями.
Ключевые слова:$\mathrm{BMO}$-регулярность, условия Макенхаупта, сингулярный интегральный оператор, максимальная функция.