RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2012, том 24, выпуск 3, страницы 22–83 (Mi aa1283)

Эта публикация цитируется в 11 статьях

Статьи

Длинные корневые торы в группах Шевалле

Н. А. Вавилов, А. А. Семенов

С.-Петербургский государственный университет, математико-механический факультет, Санкт-Петербург, Россия

Аннотация: Статья посвящена детальному изучению самых важных, и, вообще говоря, самых просто устроенных полупростых элементов в группах Шевалле $G=G(\Phi,K)$, а именно длинных корневых элементов $gh_\alpha(\varepsilon)g^{-1}$, где корень $\alpha$ длинный, $\varepsilon\in K^*$, а $g\in G$. Мы приводим детальные доказательства всех анонсированных нами ранее результатов, относящихся к таким элементам. Пусть $Q=\{gh_\alpha(\varepsilon)g^{-1},\,\varepsilon\in K^*\}$, где $g\in G$, есть длинный корневой тор. Зафиксируем борелевскую подгруппу $B=B(\Phi,K)$, и пусть $U=U(\Phi,K)$ – ее унипотентный радикал. Мы доказываем сильную форму редукции к $\mathrm D_4$, утверждающую, что найдется $u\in U$ такое, что $uQu^{-1}$ содержится в какой-то подгруппе $G(\Delta,K)$ типа $\Delta\le\Phi$, где $\Delta$ изоморфна скручиванию подсистемы в $\mathrm D_4$. Оказывается, что при этом все элементы $gh_\alpha(\varepsilon)g^{-1}$, $\varepsilon\in K^*$, кроме единичного и еще самое большее двух из них, лежат в одном и том же типичном классе разложения Брюа $Bw_0B$. Иными словами, найдется не более одного элемента $\theta\neq1$ такого, что $gh_\alpha(\theta)g^{-1}\in BwB$ и $gh_\alpha(\theta^{-1})g^{-1}\in Bw^{-1}B$ для некоторого $w\neq w_0$.

Ключевые слова: группы Шевалле, полупростые корневые элементы, разложение Брюа, борелевские орбиты, параболические подгруппы с экстраспециальным унипотентным радикалом.

Поступила в редакцию: 09.09.2011


 Англоязычная версия: St. Petersburg Mathematical Journal, 2013, 24:3, 387–430

Реферативные базы данных:


© МИАН, 2024