RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2012, том 24, выпуск 6, страницы 77–123 (Mi aa1310)

Эта публикация цитируется в 8 статьях

Статьи

The fractional Riesz transform and an exponential potential

B. Jayea, F. Nazarova, A. Volbergb

a Kent State University, Department of Mathematics, Kent, OH
b Michigan State University, Department of Mathematics, East Lansing, MI

Аннотация: In this paper we study the $s$-dimensional Riesz transform of a finite measure $\mu$ in $\mathbf R^d$, with $s\in(d-1,d)$. We show that the boundedness of the Riesz transform of $\mu$ yields a weak type estimate for the Wolff potential $\mathcal W_{\Phi,s}(\mu)(x)=\int_0^\infty\Phi\bigl(\frac{\mu(B(x,r))}{r^s}\bigl)\frac{dr}r$, where $\Phi(t)=e^{-1/t^\beta}$ with $\beta>0$ depending on $s$ and $d$. In particular, this weak type estimate implies that $\mathcal W_{\Phi,s}(\mu)$ is finite $\mu$-almost everywhere. As an application, we obtain an upper bound for the Calderón–Zygmund capacity $\gamma_s$ in terms of the non-linear capacity associated to the gauge $\Phi$. It appears to be the first result of this type for $s>1$.

Ключевые слова: Riesz transform, Calderón–Zygmund capacity, nonlinear capacity, Wolff potential, totally lower irregular measure.

Поступила в редакцию: 11.07.2012

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2013, 24:6, 903–938

Реферативные базы данных:


© МИАН, 2024