RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2013, том 25, выпуск 5, страницы 61–85 (Mi aa1354)

Эта публикация цитируется в 13 статьях

Статьи

Characterization of cyclic Schur groups

S. Evdokimova, I. Kovácsb, I. Ponomarenkoa

a St. Petersburg Branch, Steklov Mathematical Institute, Russian Academy of Sciences, Fontanka, 27, 191023, St. Petersburg, Russia
b IAM and FAMNIT, University of Primorska, Muzejski trg 2, SI6000, Koper, Slovenia

Аннотация: A finite group $G$ is called a Schur group if any Schur ring over $G$ is associated in a natural way with a subgroup of $\mathrm{Sym}(G)$ that contains all right translations. It was proved by R. Pöschel (1974) that, given a prime $p\ge5$, a $p$-group is Schur if and only if it is cyclic. We prove that a cyclic group of order $n$ is Schur if and only if $n$ belongs to one of the following five families of integers: $p^k$, $pq^k$, $2pq^k$, $pqr$, $2pqr$ where $p,q,r$ are distinct primes, and $k\ge0$ is an integer.

Ключевые слова: Schur ring, Schur group, permutation group, circulant cyclotomic S-ring, generalized wreath product.

Поступила в редакцию: 07.09.2012

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2014, 25:5, 755–773

Реферативные базы данных:


© МИАН, 2024