RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2013, том 25, выпуск 6, страницы 37–49 (Mi aa1362)

Статьи

When should a polynomial's root nearest to a real number be real itself?

A. Dubickas

Department of Mathematics and Informatics, Vilnius University, Naugarduko, 24, Vilnius LT-03225, Lithuania

Аннотация: The conditions are studied under which the root of an integer polynomial nearest to a given real number $y$ is real. It is proved that if a polynomial $P\in\mathbb Z[x]$ of degree $d\geq2$ satisfies $|P(y)|\ll1/M(P)^{2d-3}$ for some real number $y$, where the implied constant depends on $d$ only, then the root of $P$ nearest to $y$ must be real. It is also shown that the exponent $2d-3$ is best possible for $d=2,3$ and that it cannot be replaced by a number smaller than $(2d-3)d/(2d-2)$ for each $d\geq4$.

Ключевые слова: polynomial root separation, real roots, Mahler's measure, discriminant.

Поступила в редакцию: 04.10.2012

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2014, 25:6, 919–928

Реферативные базы данных:


© МИАН, 2024