Аннотация:
В $L_2(\mathbb R^d;\mathbb C^n)$ рассматривается класс матричных дифференциальных операторов $\mathcal B_\varepsilon$ второго порядка c быстро осциллирующими коэффициентами (зависящими от $\mathbf x/\varepsilon$). При фиксированном $s>0$ и малом $\varepsilon>0$ мы находим аппроксимацию оператора $\exp(-\mathcal B_\varepsilon s)$ по $(L_2\to L_2)$- и $(L_2\to H^1)$-норме с погрешностью порядка $\varepsilon$. Результаты применяются к гомогенизации решений параболической задачи Коши.
Ключевые слова:параболическое уравнение, задача Коши, усреднение, корректор.