Аннотация:
Построены и обоснованы полные асимптотические разложения двух серий собственных чисел и соответствующих собственных функций спектральной задачи Стеклова в области с сингулярным возмущением границы в виде малой полости. Члены упомянутых серий имеют вид $\lambda_k+o(1)$ и $\varepsilon^{-1}(\mu_m+o(1))$, где $\lambda_k$ и $\mu_m$ – собственные числа задачи Стеклова в ограниченной области без полости и внешней задачи Стеклова для полости единичного размера. Рассмотрена схожая задача теории поверхностных волн. Обсуждается вопрос о требовании гладкости границы и формулируются нерешенные задачи.
Ключевые слова:спектральная задача Стеклова, сингулярное возмущение границы, малая полость, полные асимптотические разложения собственных чисел и функций, поверхностные волны.