RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2014, том 26, выпуск 2, страницы 216–228 (Mi aa1382)

Эта публикация цитируется в 2 статьях

Статьи

Tropical semimodules of dimension two

Ya. Shitov

National Research University Higher School of Economics, Myasnitskaya Ulitsa, 20, 101000, Moscow, Russia

Аннотация: The tropical arithmetic operations on $\mathbb R$ are defined as $a\oplus b=\min\{a,b\}$ and $a\otimes b=a+b$. In the paper, the concept of a semimodule is discussed, which is rather ill-behaved in tropical mathematics. The semimodules $S\subset\mathbb R^n$ having topological dimension two are studied and it is shown that any such $S$ has a finite weak dimension not exceeding $n$. For a fixed $k$, a polynomial time algorithm is constructed that decides whether $S$ is contained in some tropical semimodule of weak dimension $k$ or not. This result provides a solution of a problem that has been open for eight years.

Ключевые слова: tropical mathematics, linear algebra, computational complexity.

Поступила в редакцию: 27.06.2013

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2015, 26:2, 341–350

Реферативные базы данных:


© МИАН, 2024