Аннотация:
В пространстве $L_2(\mathbb R^d;\mathbb C^n)$ рассматривается матричный эллиптический самосопряженный дифференциальный оператор (ДО) $\mathcal B_\varepsilon$ второго порядка с быстро осциллирующими коэффициентами. Старшая часть оператора задается в факторизованном виде $b(\mathbf D)^* g(\varepsilon^{-1}\mathbf x)b(\mathbf D)$, где $g$ – периодическая, ограниченная и положительно определенная матрица-функция, а $b(\mathbf D)$ – матричный ДО первого порядка, символ которого есть матрица максимального ранга. Оператор $\mathcal B_\varepsilon$ содержит также члены первого и нулевого порядков с неограниченными коэффициентами. Изучается задача усреднения в пределе малого периода. Для обобщенной резольвенты оператора $\mathcal B_\varepsilon$ получена аппроксимация по операторной норме в $L_2(\mathbb R^d;\mathbb C^n)$ с погрешностью $O(\varepsilon^2)$. Старший член аппроксимации представляет собой обобщенную резольвенту эффективного оператора $\mathcal B^0$ с постоянными коэффициентами; в аппроксимации учитывается корректор первого порядка. Оценка погрешности точна по порядку; постоянные в оценках контролируются в терминах исходных данных задачи. Общие результаты применяются к задачам усреднения для оператора Шрёдингера и двумерного оператора Паули с сингулярными быстро осциллирующими потенциалами.
Ключевые слова:усреднение, эффективный оператор, корректор, операторные оценки погрешности.