RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2015, том 27, выпуск 1, страницы 125–148 (Mi aa1417)

Эта публикация цитируется в 1 статье

Статьи

О граничном поведении положительных решений эллиптических дифференциальных уравнений

А. А. Логунов

С.-Петербургский государственный университет, математико-механический факультет, Россия

Аннотация: Пусть $u$ – положительная гармоническая функция в единичном шаре $B\subset\mathbb R^n$, а $\mu$ – граничная мера функции $u$. Для точки $x\in\partial B$ будем обозначать через $\bar n(x)$ внутреннюю нормаль к $\partial B$ в точке $x$. Зафиксируем числа $\alpha\in(-1,n-1]$ и $A\in[0,+\infty)$. Мы докажем, что $u(x+\bar n(x)t)t^\alpha\to A$ при $t\to+0$, если и только если $\frac{\mu(B_r(x))}{r^{n-1}}r^\alpha\to C_\alpha A$ при $r\to+0$, где $C_\alpha=\frac{\pi^{n/2}}{\Gamma(\frac{n-\alpha+1}2)\Gamma(\frac{\alpha+1}2)}$. Случай $\alpha=0$ представляет собой критерий существования предела функции $u$ вдоль нормали, этот случай изучался в работах Люмиса и Рудина. При $\alpha=n-1$ речь идет о величине точечной нагрузки граничной меры $\mu$ в точке $x$, этот случай следует из принципа минимальности Берлинга. При $\alpha\in[0,n-1]$ мы обобщим этот результат и критерий существования некасательного предела функции $u$ на случай областей с достаточно гладкой границей и эллипических операторов второго порядка с переменными гельдеровыми коэффициентами при помощи асимптотических оценок гармонической меры.

Ключевые слова: гармонические функции, тауберовы теоремы.

Поступила в редакцию: 21.09.2014


 Англоязычная версия: St. Petersburg Mathematical Journal, 2016, 27:1, 87–102

Реферативные базы данных:


© МИАН, 2024