RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2015, том 27, выпуск 3, страницы 183–201 (Mi aa1440)

Статьи

Contact of a thin free boundary with a fixed one in the Signorini problem

N. Matevosyana, A. Petrosyanb

a Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA
b Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Аннотация: The Signorini problem is studied near a fixed boundary where the solution is “clamped down” or “glued”. It is shown that, in general, the solutions are at least $C^{1/2}$ regular and that this regularity is sharp. Near the actual points of contact of the free boundary with the fixed one, the blowup solutions are shown to have homogeneity $\kappa\geq3/2$, while at the noncontact points the homogeneity must take one of the values: $1/2,3/2,\dots,m-1/2,\ldots$

Ключевые слова: Signorini problem, thin obstacle problem, thin free boundary, optimal regularity, contact with fixed boundary, Almgren's frequency formula.

Поступила в редакцию: 12.01.2015

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2016, 27:3, 481–494

Реферативные базы данных:


© МИАН, 2024