Аннотация:
Пусть $E$ – банахово идеальное пространство последовательностей, $E'$ – его порядковое сопряженное. По определению, теорема о короне выполнена для $E$, если для всяких ограниченных аналитических функций $f_j$ в единичном круге $\mathbb D$, удовлетворяющих условию $0<\delta\le\|\{f_j(z)\}\|_E\le1$, найдется последовательность $\{g_j\}$ ограниченных аналитических функций такая, что $\sum_jf_j(z)g_j(z)\equiv1$ и $\|\{g_j(z)\}\|_{E'}\le C(\delta)$, $z\in\mathbb D$. Показано, что теорема о короне выполнена для пространств $l^p$, $1\le p<\infty$, и для некоторых более общих банаховых решеток.
Ключевые слова:теорема о короне, решетка измеримых функций, $\mathrm{BMO}$-регулярность.