RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2015, том 27, выпуск 6, страницы 117–149 (Mi aa1469)

Эта публикация цитируется в 4 статьях

Статьи

Tate sequences and Fitting ideals of Iwasawa modules

C. Greithera, M. Kuriharab

a Institut für Theoretische Informatik und Mathematik, Universität der Bundeswehr, München, 85577 Neubiberg, Germany
b Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan

Аннотация: We consider Abelian CM extensions $L/k$ of a totally real field $k$, and we essentially determine the Fitting ideal of the dualized Iwasawa module studied by the second author in the case where only places above $p$ ramify. In doing so we recover and generalize the results mentioned above. Remarkably, our explicit description of the Fitting ideal, apart from the contribution of the usual Stickelberger element $\dot\Theta$ at infinity, only depends on the group structure of the Galois group $\operatorname{Gal}(L/k)$ and not on the specific extension $L$. From our computation it is then easy to deduce that $\dot T\dot\Theta$ is not in the Fitting ideal as soon as the $p$-part of $\operatorname{Gal}(L/k)$ is not cyclic. We need a lot of technical preparations: resolutions of the trivial module $\mathbb Z$ over a group ring, discussion of the minors of certain big matrices that arise in this context, and auxiliary results about the behavior of Fitting ideals in short exact sequences.

Ключевые слова: Tate sequences, class groups, cohomology, totally real fields, CM-fields.

Поступила в редакцию: 15.06.2015

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2016, 27:6, 941–965

Реферативные базы данных:


© МИАН, 2024