RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2015, том 27, выпуск 6, страницы 199–233 (Mi aa1473)

Эта публикация цитируется в 1 статье

Статьи

Zeta integrals on arithmetic surfaces

T. Oliver

Heilbronn Institute for Mathematical Research, University of Bristol, UK

Аннотация: Given a (smooth, projective, geometrically connected) curve over a number field, one expects its Hasse–Weil $L$-function, a priori defined only on a right half-plane, to admit meromorphic continuation to $\mathbb C$ and satisfy a simple functional equation. Aside from exceptional circumstances, these analytic properties remain largely conjectural. One may formulate these conjectures in terms of zeta functions of two-dimensional arithmetic schemes, on which one has non-locally compact “analytic” adelic structures admitting a form of “lifted” harmonic analysis first defined by Fesenko for elliptic curves. In this paper we generalize his global results to certain curves of arbitrary genus by invoking a renormalizing factor which may be interpreted as the zeta function of a relative projective line. We are lead to a new interpretation of the “gamma factor” (defined in terms of the Hodge structures at archimedean places) and an (two-dimensional) adelic interpretation of the “mean-periodicity correspondence”, which is comparable to the conjectural automorphicity of Hasse–Weil $L$-functions.

Ключевые слова: scheme of finite type, zeta function, local field, Hasse–Weil $L$-function, complete discrete valuation field, adeles.

Поступила в редакцию: 27.02.2015

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2016, 27:6, 1003–1028

Реферативные базы данных:


© МИАН, 2024