RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2016, том 28, выпуск 5, страницы 21–60 (Mi aa1506)

Эта публикация цитируется в 3 статьях

Статьи

Asymptotics of parabolic Green's functions on lattices

P. Gurevichab

a Free University of Berlin, Germany
b Peoples' Friendship University, Russia

Аннотация: For parabolic spatially discrete equations, we consider Green's functions, also known as heat kernels on lattices. We obtain their asymptotic expansions with respect to powers of time variable $t$ up to an arbitrary order and estimate the remainders uniformly on the entire lattice. The spatially discrete (difference) operators under consideration are finite-difference approximations of continuous strongly elliptic differential operators (with constant coefficients) of arbitrary even order in $\mathbb R^d$ with arbitrary $d\in\mathbb N$. This genericity, besides numerical and deterministic lattice-dynamics applications, allows one to obtain higher-order asymptotics of transition probability functions for continuous-time random walks on $\mathbb Z^d$ and other lattices.

Ключевые слова: spatially discrete parabolic equations, asymptotics, discrete Green functions, lattice Green functions, heat kernels of lattices, continuous-time random walks.

Поступила в редакцию: 22.06.2015

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2017, 28:5, 569–596

Реферативные базы данных:


© МИАН, 2024