Аннотация:
Пусть $\Omega\subset\mathbb R^2$ – счётносвязная область. Каждой замкнутой $1$-форме в $\Omega$ с компонентами из $L^2(\Omega)$ сопоставим последовательность её периодов вокруг дыр в области $\Omega$, т.е. вокруг ограниченных компонент её дополнения до $\mathbb R^2$. Для каких областей $\Omega$ совокупность таких последовательностей периодов совпадает с $\ell^2$? Мы даём ответ на этот вопрос в терминах метрических свойств дыр в $\Omega$.
Ключевые слова:бесконечносвязная область, периоды формы, интерполяция, базис Рисса, гармонические функции.