Статьи
Numerically detectable hidden spectrum of certain integration operators
N. Nikolskiab a St. Petersburg State University, Chebyshev Laboratory, 199178, St. Petersburg, Russia
b University of Bordeaux, France
Аннотация:
It is shown that the critical constant for effective inversions in operator algebras
$alg(V)$ generated by the Volterra integration
$Jf=\int_0^xf\,dt$ in the spaces
$L^1(0,1)$ and
$L^2(0,1)$ are different: respectively,
$\delta_1=1/2$ (i.e., the effective inversion is possible only for polynomials
$T=p(J)$ with a small condition number
$r(T^{-1})\|T\|<2$,
$r(\cdot)$ being the spectral radius), and
$\delta_1=1$ (no norm control of inverses). For more general integration operator
$J_\mu f=\int_{[0,x>}f\,d\mu$ on the space
$L^2([0,1],\mu)$ with respect to an arbitrary finite measure
$\mu$, the following
$0-1$ law holds: either
$\delta_1=0$ (and this happens if and only if
$\mu$ is a purely discrete measure whose set of point masses
$\mu(\{x\})$ is a finite union of geometrically decreasing sequences), or
$\delta_1=1$.
Ключевые слова:
effective inversion, visible spectrum, integration operator.
Поступила в редакцию: 25.06.2016
Язык публикации: английский