RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2007, том 19, выпуск 6, страницы 184–199 (Mi aa152)

Эта публикация цитируется в 2 статьях

Статьи

Dessins d'enfants and differential equations

F. Lárussona, T. Sadykovb

a School of Mathematical Sciences, University of Adelaide, Adelaide SA, Australia
b Department of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk

Аннотация: A discrete version of the classical Riemann–Hilbert problem is stated and solved. In particular, a Riemann–Hilbert problem is associated with every dessin d'enfants. It is shown how to compute the solution for a dessin that is a tree. This amounts to finding a Fuchsian differential equation satisfied by the local inverses of a Shabat polynomial. A universal annihilating operator for the inverses of a generic polynomial is produced. A classification is given for the plane trees that have a representation by Möbius transformations and for those that have a linear representation of dimension at most two. This yields an analogue for trees of Schwarz's classical list, that is, a list of the plane trees whose Riemann–Hilbert problem has a hypergeometric solution of order at most two.

Ключевые слова: Riemann–Hilbert problem, Fuchsian equation, dessins d'enfants.

MSC: 34M50

Поступила в редакцию: 31.10.2006

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2008, 19:6, 1003–1014

Реферативные базы данных:


© МИАН, 2024