Аннотация:
Исследуется модельная задача о стационарных вынужденных колебаниях жидкости малой амплитуды в поле силы тяжести в бесконечном бассейне с источниками, расположенными на коническом дне с просачиванием. Изучается классическое решение задачи в линейном приближении. С использованием преобразования Меллина и разложения по сферическим функциям задача сводится к совокупности систем функционально разностных уравнений с мероморфными коэффициентами, которые являются комбинациями присоединенных функций Лежандра и их производных. Задача для системы функционально разностных уравнений редуцируется к сингулярным интегральным уравнениям. Для этого, в частности, вычисляется решение некоторых вспомогательных функциональных уравнений первого порядка с мероморфными коэффициентами. Показано, что система интегральных уравнений фредгольмова, имеет нулевой индекс. При определенных предположениях классическое решение задачи существует и единственно. Получены оценки классического решения задачи в окрестности конической точки и на бесконечности.