RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2017, том 29, выпуск 6, страницы 99–158 (Mi aa1563)

Эта публикация цитируется в 7 статьях

Статьи

Усреднение первой начально-краевой задачи для параболических систем: операторные оценки погрешности

Ю. М. Мешковаa, Т. А. Суслинаb

a Лаборатория им. П. Л. Чебышева, С.-Петербургский государственный университет, 14 линия ВО, 29Б, 199178, Санкт-Петербург, Россия
b Физический факультет, С.-Петербургский государственный университет, Ульяновская, 3, Петродворец, 198504, Санкт-Петербург, Россия

Аннотация: Пусть $\mathcal O\subset\mathbb R^d$ – ограниченная область с границей класса $C^{1,1}$. В пространстве $L_2(\mathcal O;\mathbb C^n)$ рассматривается самосопряженный матричный эллиптический дифференциальный оператор $B_{D,\varepsilon}$, $0<\varepsilon\leqslant1$, второго порядка при условии Дирихле на границе. Старшая часть оператора задана в факторизованной форме. Оператор включает члены первого и нулевого порядков. Оператор $B_{D,\varepsilon}$ положительно определен; его коэффициенты периодичны и зависят от $\mathbf x/\varepsilon$. Изучается поведение при $\varepsilon\to0$ операторной экспоненты $e^{-B_{D,\varepsilon}t}$, $t>0$. Получены аппроксимации для $e^{-B_{D,\varepsilon}t}$ по операторной норме в $L_2(\mathcal O;\mathbb C^n)$ и по норме операторов, действующих из $L_2(\mathcal O;\mathbb C^n)$ в класс Соболева $H^1(\mathcal O;\mathbb C^n)$. Результаты применяются к усреднению решений первой начально-краевой задачи для параболических систем.

Ключевые слова: периодические дифференциальные операторы, параболические системы, усреднение, операторные оценки погрешности.

MSC: 35B27

Поступила в редакцию: 21.07.2017


 Англоязычная версия: St. Petersburg Mathematical Journal, 2018, 29:6, 935–978

Реферативные базы данных:


© МИАН, 2024