RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2018, том 30, выпуск 1, страницы 139–150 (Mi aa1574)

Эта публикация цитируется в 9 статьях

Статьи

Discrete universality of the Riemann zeta-function and uniform distribution modulo 1

A. Laurinčikas

Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania

Аннотация: It is proved that a wide class of analytic functions can be approximated by shifts $\zeta(s+i\varphi(k))$, $k\geqslant k_0$, $k\in\mathbb N$, of the Riemann zeta-function. Here the function $\varphi(t)$ has a continuous nonvanishing derivative on $[k_0,\infty)$ satisfying the estimate $\varphi(2t)\max_{t\leqslant u\leqslant2t}(\varphi'(u))^{-1}\ll t$, and the sequence $\{a\varphi(k)\colon k\geqslant k_0\}$ with every real $a\neq0$ is uniformly distributed modulo 1. Examples of $\varphi(t)$ are given.

Ключевые слова: Riemann zeta-function, uniform distribution modulo 1, universality, weak convergence.

MSC: 11M06

Поступила в редакцию: 26.11.2016

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 30:1, 103–110

Реферативные базы данных:


© МИАН, 2024