RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2018, том 30, выпуск 4, страницы 107–139 (Mi aa1610)

Эта публикация цитируется в 1 статье

Статьи

The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem

A. Lytovaa, K. Tikhomirovb

a University of Opole, Poland
b Princeton University, NJ

Аннотация: Let $n$ be a large integer, and let $G$ be the standard Gaussian vector in $\mathbb R^n$. Paouris, Valettas and Zinn (2015) showed that for all $p\in[1,c\log n]$, the variance of the $\ell_p^n$-norm of $G$ is equivalent, up to a constant multiple, to $\frac{2^p}pn^{2/p-1}$, and for $p\in[C\log n,\infty]$, to $(\log n)^{-1}$. Here, $C,c>0$ are universal constants. That result left open the question of estimating the variance for $p$ logarithmic in $n$. In this paper, the question is resolved by providing a complete characterization of $\mathbf{Var}\|G\|_p$ for all $p$. It is shown that there exist two transition points (windows) in which the behavior of $\mathbf{Var}\|G\|_p$ changes significantly. Some implications of the results are discussed in the context of random Dvoretzky's theorem for $\ell_p^n$.

Ключевые слова: $\ell_p^n$ spaces, variance of $\ell_p$ norm, Dvoretzky's theorem, order statistics.

MSC: 46B06, 46B09, 52A21, 60E15, 60G15

Поступила в редакцию: 13.02.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 30:4, 699–722

Реферативные базы данных:


© МИАН, 2024