RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 2, страницы 3–50 (Mi aa1636)

Эта публикация цитируется в 3 статьях

Обзоры

Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space

J. M. Martella, D. Mitreab, I. Mitreac, M. Mitreab

a Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/Nicolás Cabrera, 13-15, E-28049 Madrid, Spain
b Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
c Department of Mathematics, Temple University, 1805 N. Broad Street, Philadelphia, PA 19122, USA

Аннотация: This is a survey of recent progress in a program which to date has produced several publications and is aimed at proving general Fatou-type results and establishing the well-posedness of a variety of boundary value problems in the upper half-space ${\mathbb{R}}^n_{+}$ for second-order, homogeneous, constant complex coefficient, elliptic systems $L$, formulated in a manner that emphasizes pointwise nontangential boundary traces of the null-solutions of $L$ in ${\mathbb{R}}^n_{+}$.

Ключевые слова: Fatou-type theorem, Dirichlet boundary value problem, elliptic system, Poisson kernel, nontangential maximal operator, nontangential boundary trace, Muckenhoupt weights, Hardy space, bounded mean oscillations, vanishing mean oscillations, subcritical growth, sublinear growth.

MSC: Primary 31A20, 35C15, 35J57, 42B37, 46E30; Secondary 35B65, 42B25, 42B30, 42B35

Поступила в редакцию: 25.11.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 31:2, 189–222

Реферативные базы данных:


© МИАН, 2024