RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 2, страницы 75–87 (Mi aa1638)

Эта публикация цитируется в 3 статьях

Статьи

Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function

M. Akmana, J. Lewisb, A. Vogelc

a Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009
b Department of Mathematics, University of Kentucky, Lexington, KY 40506
c Department of Mathematics, Syracuse University, Syracuse, NY, 13244

Аннотация: We discuss what is known about homogeneous solutions $ u$ to the $ p$-Laplace equation, $ p$ fixed, $ 10$ is $ p$-harmonic in the cone $\displaystyle K(\alpha )=\{x=(x_1,\dots , x_n) : x_1>\cos \alpha \vert x\vert\}\subset \mathbb{R}^n, n\geq 2,$     with continuous boundary value zero on $ \partial K(\alpha ) \setminus \{0\}$ when $ \alpha \in (0,\pi ]$. We also outline a proof of our new result concerning the exact value, $ \lambda =1-(n-1)/p$, for an eigenvalue problem in an ODE associated with $ u$ when $ u$ is $ p$ harmonic in $ K(\pi )$ and $ p>n-1$. Generalizations of this result are stated. Our result complements the work of Krol'-Maz'ya for $ 1<p\leq n-1$.

Ключевые слова: $p$-Laplacian, boundary Harnack inequalities, homogeneous $p$-harmonic functions, eigenvalue problem.

MSC: Primary 35P99; Secondary 76B15, 35Q35

Поступила в редакцию: 23.10.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 31:2, 241–250

Реферативные базы данных:


© МИАН, 2025