Аннотация:
We discuss what is known about homogeneous solutions $ u$ to the $ p$-Laplace equation, $ p$ fixed, $ 10$ is $ p$-harmonic in the cone $\displaystyle K(\alpha )=\{x=(x_1,\dots , x_n) : x_1>\cos \alpha \vert x\vert\}\subset \mathbb{R}^n, n\geq 2,$ with continuous boundary value zero on $ \partial K(\alpha ) \setminus \{0\}$ when $ \alpha \in (0,\pi ]$. We also outline a proof of our new result concerning the exact value, $ \lambda =1-(n-1)/p$, for an eigenvalue problem in an ODE associated with $ u$ when $ u$ is $ p$ harmonic in $ K(\pi )$ and $ p>n-1$. Generalizations of this result are stated. Our result complements the work of Krol'-Maz'ya for $ 1<p\leq n-1$.