RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 2, страницы 118–151 (Mi aa1640)

Эта публикация цитируется в 3 статьях

Статьи

Weak global solvability of the two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. The case of two spatial variables

A. A. Arkhipova

St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St-Petersburg, Russia

Аннотация: A class of quasilinear parabolic systems with nondiagonal principal matrix and strongly nonlinear additional terms is considered. The elliptic operator of the system has a variational structure and is generated by a quadratic functional with a nondiagonal matrix. A plane domain of the spatial variables is divided by a smooth curve in two subdomains and the principal matrix of the system has a “jump” when crossing this curve. The two-phase conditions are given on this curve and the Cauchy-Dirichlet conditions hold at the parabolic boundary of the main parabolic cylinder. The existence of a weak Hölder continuous global solution of the two-phase problem is proved. The problem can be regarded as a construction of the heat flow from a given vector-function to an extremal of the functional.

Ключевые слова: parabolic systems, strong nonlinearity, global solvability.

MSC: 35K59

Поступила в редакцию: 30.11.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 31:2, 273–296

Реферативные базы данных:


© МИАН, 2024