RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2019, том 31, выпуск 2, страницы 204–226 (Mi aa1644)

Эта публикация цитируется в 6 статьях

Статьи

On Landis' conjecture in the plane when the potential has an exponentially decaying negative part

B. Daveya, C. Kenigb, J.-N. Wangc

a Department of Mathematics, City College of New York, CUNY, NY 10031, New York, USA
b Department of Mathematics, University of Chicago, IL 60637, Chicago, USA
c Institute of Applied Mathematical Sciences, NCTS, National Taiwan University, Taipei 106, Taiwan

Аннотация: In this article, we continue our investigation into the unique continuation properties of real-valued solutions to elliptic equations in the plane. More precisely, we make another step towards proving a quantitative version of Landis' conjecture by establishing unique continuation at infinity estimates for solutions to equations of the form $ - \Delta u + V u = 0$ in $ \mathbb{R}^2$, where $ V = V_+ - V_-$, $ V_+ \in L^\infty $, and $ V_-$ is a nontrivial function that exhibits exponential decay at infinity. The main tool in the proof of this theorem is an order of vanishing estimate in combination with an iteration scheme. To prove the order of vanishing estimate, we establish a similarity principle for vector-valued Beltrami systems.

Ключевые слова: Landis' conjecture, quantitative unique continuation, order of vanishing, vector-valued Beltrami system.

MSC: 35B60, 35J10

Поступила в редакцию: 06.09.2018

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2019, 31:2, 337–353

Реферативные базы данных:


© МИАН, 2024