Эта публикация цитируется в
17 статьях
Статьи
Eigenvalues of the Neumann–Poincare operator in dimension 3: Weyl's law and geometry
Y. Miyanishia,
G. Rozenblumbcd a Center for Mathematical Modeling and Data Science, Osaka University, Japan
b Dept. Math. Physics, St.Petersburg State University, St. Petersburg, Russia
c Chalmers University of Technology
d The University of Gothenburg, Sweden
Аннотация:
We consider the asymptotic properties of the eigenvalues of the Neumann–Poincaré (
$\mathrm{NP}$) operator in three dimensions. The region
$\Omega\subset\mathbb{R}^3$ is bounded by a compact surface
$\Gamma=\partial \Omega$, with certain smoothness conditions imposed. The
$\mathrm{NP}$ operator
$\mathcal{K}_{\Gamma}$, called often ‘the direct value of the double layer potential’, acting in
$L^2(\Gamma)$, is defined by
\begin{equation*}
\mathcal{K}_{\Gamma}[\psi](\mathbf{x}):=\frac{1}{4\pi}\int\limits_\Gamma\frac{\langle \mathbf{y}-\mathbf{x},\mathbf{n}(\mathbf{y})\rangle}{|\mathbf{x}-\mathbf{y}|^3}\psi(\mathbf{y})dS_{\mathbf{y}},
\end{equation*}
where
$dS_{\mathbf{y}}$ is the surface element and
$\mathbf{n}(\mathbf{y})$ is the outer unit normal on
$\Gamma$. The first-named author proved in [27] that the singular numbers
$s_j(\mathcal{K}_{\Gamma})$ of
$\mathcal{K}_{\Gamma}$ and the ordered moduli of its eigenvalues
$\lambda_j(\mathcal{K}_{\Gamma})$ satisfy the Weyl law
\begin{equation*}
s_j(\mathcal{K}(\Gamma))\sim|\lambda_j(\mathcal{K}_{\Gamma})|\sim \left\{ \frac{3W(\Gamma)-2\pi\chi(\Gamma)}{128\pi}\right\}^{\frac12}j^{-\frac12},
\end{equation*}
under the condition that
$\Gamma$ belongs to the class
$C^{2, \alpha}$ with
$\alpha>0$,
where
$W(\Gamma)$ and
$\chi(\Gamma)$ denote, respectively, the Willmore energy and the Euler characteristic of the boundary surface
$\Gamma$. Although the
$\mathrm{NP}$ operator is not selfadjoint (and therefore no general relationships between eigenvalues and singular number exists), the ordered moduli of the eigenvalues of
$\mathcal{K}_{\Gamma}$ satisfy the same asymptotic relation.
Our main purpose here is to investigate the asymptotic behavior of positive and negative eigenvalues separately under the condition of infinite smoothness of the boundary
$\Gamma$. These formulas are used, in particular, to obtain certain answers to the long-standing problem of the existence or finiteness of negative eigenvalues of
$\mathcal{K}_{\Gamma}$. A more sophisticated estimation allows us to give a natural extension of the Weyl law for the case of a smooth boundary.
Ключевые слова:
Neumann–Poincaré operator, eigenvalues, Weyl's law, pseudodifferential operators, Willmore energy.
MSC: Primary
47A75; Secondary
58J50 Поступила в редакцию: 03.12.2018
Язык публикации: английский