RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2020, том 32, выпуск 5, страницы 1–36 (Mi aa1720)

Статьи

On some degeneracy loci in the moduli space of pointed odd spin curves

M. K. Basok

Лаборатория “Современная алгебра и приложения”, Санкт-Петербургский государственный университет 14 линия В.О., дом 29Б, 199178, Санкт-Петербург, Россия

Аннотация: Let $C$ be a smooth projective curve of genus $g\geq 3$ and let $\eta$ be an odd theta characteristic on it such that $h^0(C,\eta) = 1$. Pick a point $p$ from the support of $\eta$ and consider the one-dimensional linear system $|\eta + p|$. In general this linear system is base-point free and all its ramification points are simple. The locus in the moduli space of odd spin curves is studied where the linear system $|\eta + p|$ fails to have this general behavior. This locus is stratified with respect to multiplicities of degeneracies; these strata are called degeneracy schemes and their geometry is explored. Conormal spaces to these schemes are described in intrinsic terms and some consequences of this are presented.

Ключевые слова: moduli spase, projecture curve, theta characteristics, degeneracy scheme.

Поступила в редакцию: 19.02.2019

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2021, 32:5, 819–845


© МИАН, 2024