Аннотация:
The maximal ideal space of the algebra of bounded holomorphic functions on the countable disjoint union of open unit disks $\mathbb{D}\subset\mathbb{C}$ is studied from a topological point of view. The results are similar to those for the maximal ideal space of the algebra $H^\infty(\mathbb{D})$.
Ключевые слова:maximal ideal space of $H^\infty(\mathbb{D}\times\mathbb{N})$, interpolating sequence, Blaschke product, Gleason part, analytic disk, covering dimension, cohomology, Freudenthal compactification.