RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2021, том 33, выпуск 2, страницы 5–34 (Mi aa1746)

Эта публикация цитируется в 2 статьях

Статьи

Нестандартные лиувиллевы торы и каустики в асимптотиках в виде функций Эйри и Бесселя для двумерных стоячих береговых волн

А. Ю. Аникин, С. Ю. Доброхотов, В. Е. Назайкинский, А. В. Цветкова

Институт проблем механики им. А. Ю. Ишлинского РАН, пр-т Вернадского, д. 101 119526, Москва, Россия

Аннотация: Рассматривается спектральная задача $-\langle\nabla,D(x)\nabla \psi\rangle= \lambda \psi$ в ограниченной двумерной области $\Omega$, где $D(x)$ — положительная внутри области гладкая функция, такая, что на границе области она равна нулю, а её градиент отличен от нуля. Эта задача возникает при исследовании длинных волн, захваченных берегами и донными неоднородностями. Для её асимптотических решений при $\lambda \rightarrow \infty$ приводятся явные формулы в случае, когда функция $D(x)$ имеет специальный вид, гарантирующий полную интегрируемость гамильтоновой системы, отвечающей гамильтониану $H(x,p)=D(x)p^2$. Поскольку задача вырождена, соответствующие лиувиллевы торы лежат не в стандартном фазовом пространстве $T^*\Omega$, а в “пополненном” фазовом пространстве $\Phi\supset T^*\Omega$, при этом их сужения на $T^*\Omega$ оказываются некомпактными и “уходят на бесконечность” по импульсам при подходе к границе области. В результате возникают нестандартные каустики, образованные границей области или её частью, в окрестности которых асимптотические собственные функции выражаются через функцию Бесселя сложного аргумента. Стандартные каустики (внутри области) также могут появляться, что даёт в асимптотике функции Эйри.

Ключевые слова: длинные волны на воде, волновой оператор с вырождающейся скоростью, асимптотические собственные функции, биллиарды.

Поступила в редакцию: 22.08.2020


 Англоязычная версия: St. Petersburg Mathematical Journal, 2022, 33:2, 185–205


© МИАН, 2024