Аннотация:
The algebra $H^\infty(D)$ of bounded holomorphic functions on $D\subset\mathbb C$ is projective free for a wide class of infinitely connected domains. In particular, for such $D$ every rectangular left-invertible matrix with entries in $H^\infty(D)$ can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of $H^\infty(D)$ asserting that its covering dimension is $2$ and the second Čech cohomology group is trivial.