RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2021, том 33, выпуск 4, страницы 49–65 (Mi aa1769)

Эта публикация цитируется в 1 статье

Статьи

Projective free algebras of bounded holomorphic functions on infinitely connected domains

A. Brudnyi

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

Аннотация: The algebra $H^\infty(D)$ of bounded holomorphic functions on $D\subset\mathbb C$ is projective free for a wide class of infinitely connected domains. In particular, for such $D$ every rectangular left-invertible matrix with entries in $H^\infty(D)$ can be extended in this class of matrices to an invertible square matrix. This follows from a new result on the structure of the maximal ideal space of $H^\infty(D)$ asserting that its covering dimension is $2$ and the second Čech cohomology group is trivial.

Ключевые слова: Maximal ideal space, corona problem, projective free ring, Hermite ring, covering dimension, Čech cohomology.

Поступила в редакцию: 14.11.2019

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2022, 33:4, 619–631


© МИАН, 2024