RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2021, том 33, выпуск 4, страницы 173–209 (Mi aa1775)

Статьи

Do some nontrivial closed $z$-invariant subspaces have the division property?

J. Esterle

IMB, UMR 5251, Université de Bordeaux 351, cours de la Libération, 33405 - Talence, France

Аннотация: Banach spaces $E$ of functions holomorphic on the open unit disk $\mathbb{D}$ are considered such that the unilateral shift $S$ and the backward shift $T$ are bounded on $E$. Under the assumption that the spectra of $S$ and $T$ are equal to the closed unit disk, the existence is discussed of closed $z$-invariant subspaces $N$ of $E$ having the “division property,” which means that the function $f_{\lambda}\colon z \mapsto {f(z)\over z-\lambda}$ belongs to $N$ for every $\lambda \in \mathbb{D}$ and for every $f \in N$ with $f(\lambda)=0$. This question is related to the existence of nontrivial bi-invariant subspaces of Banach spaces of hyperfunctions on the unit circle $\mathbb{T}$.

Ключевые слова: unilateral shift, backward shift, division property, invariant subspace, bi-invariant subspace.

Поступила в редакцию: 05.05.2020

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2022, 33:4, 711–738


© МИАН, 2024