RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2021, том 33, выпуск 5, страницы 193–206 (Mi aa1782)

Статьи

A new characterization of GCD domains of formal power series

A. Hamed

Department of Mathematics, Faculty of Sciences, Monastir, Tunisia

Аннотация: By using the $v$-operation, a new characterization for a power series ring to be a GCD domain is discussed. It is shown that if $D$ is a $\mathrm{UFD}$, then $D[\![X]\!]$ is a GCD domain if and only if for any two integral $v$-invertible $v$‑ideals $I$ and $J$ of $D[\![X]\!]$ such that $(IJ)_{0}\neq (0),$ we have $((IJ)_{0})_{v}$ $= ((IJ)_{v})_{0},$ where $I_0=\{f(0) \mid f\in I\}$. This shows that if $D$ is a GCD domain such that $D[\![X]\!]$ is a $\pi$-domain, then $D[\![X]\!]$ is a GCD domain.

Ключевые слова: GCD domain, power series rings.

Поступила в редакцию: 15.10.2019

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2022, 33:5, 879–889


© МИАН, 2024