RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 1, страницы 35–60 (Mi aa1795)

Статьи

Two stars theorems for traces of the Zygmund space

A. Brudnyi

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, T2N 1N4

Аннотация: For a Banach space $X$ defined in terms of a big-$O$ condition and its subspace $x$ defined by the corresponding little-$o$ condition, the biduality property (generalizing the concept of reflexivity) asserts that the bidual of $x$ is naturally isometrically isomorphic to $X$. The property is known for pairs of many classical function spaces (such as $(\ell_\infty, c_0)$, $(\mathrm{BMO}, \mathrm{VMO})$, $(\mathrm{Lip}, \mathrm{lip})$, etc.) and plays an important role in the study of their geometric structure. The present paper is devoted to the biduality property for traces to closed subsets $S\subset\mathbb{R}^n$ of a generalized Zygmund space $Z^\omega(\mathbb{R}^n)$. The method of the proof is based on a careful analysis of the structure of geometric preduals of the trace spaces along with a powerful finiteness theorem for the trace spaces $Z^\omega(\mathbb{R}^n)|_S$.

Ключевые слова: Zygmund space, biduality property, trace space, predual space, weak$^*$ topology, finiteness property.

Поступила в редакцию: 09.07.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:1, 25–44

Реферативные базы данных:


© МИАН, 2024