RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 2, страницы 231–239 (Mi aa1806)

Легкое чтение для профессионалов

On the least common multiple of several consecutive values of a polynomial

A. Dubickas

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

Аннотация: In this note we prove the periodicity of an arithmetic function that is the quotient of the product of $k+1$ values (where $k \geq 1$) of a polynomial $f \in {\mathbb Z}[x]$ at $k + 1$ consecutive integers ${f(n) f(n + 1) \cdots f(n + k)}$ and the least common multiple of the corresponding integers ${f(n),f(n + 1),\dots,f(n + k)}$. We show that this function is periodic if and only if no difference between two roots of $f$ is a positive integer smaller than or equal to $k$. This implies an asymptotic formula for the least common multiple of $f(n),f(n+1),\dots,f(n+k)$ and extends some earlier results in this area from linear and quadratic polynomials $f$ to polynomials of arbitrary degree $d$. A period in terms of the reduced resultants of $f(x)$ and $f(x+\ell)$, where $1 \leq \ell \leq k$, is given explicitly, as well as few examples of $f$ when the smallest period can be established.

Ключевые слова: least common multiple, reduced resultant, periodic arithmetic function.

Поступила в редакцию: 13.10.2019

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:2, 305–311

Реферативные базы данных:


© МИАН, 2024