RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 3, страницы 159–174 (Mi aa1813)

Статьи

On the maximal ideal spaces of $\mathbf{H^\infty}$ on coverings of bordered Riemann surfaces

A. Brudnyi

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N 1N4

Аннотация: The paper describes the topological structure of the maximal ideal space of the algebra of bounded holomorphic functions on a covering of a bordered Riemann surface. Some applications of the obtained results to the theory of bounded operator-valued holomorphic functions on Riemann surfaces are presented.

Ключевые слова: maximal ideal space, interpolating sequence, Blaschke product, Gleason part, analytic disk, covering dimension, cohomology, Freudenthal compactification.

Поступила в редакцию: 19.08.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:3, 427–438

Реферативные базы данных:


© МИАН, 2025