RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 3, страницы 175–192 (Mi aa1814)

Эта публикация цитируется в 1 статье

Статьи

Power dilation systems $\{f(z^k)\}_{k\in\mathbb{N}}$ in Dirichlet-type spaces

H. Dana, K. Guob

a College of Mathematics, Sichuan University, Chengdu, Sichuan, 610065, China
b School of Mathematical Sciences, Fudan University, Shanghai, 200433, China

Аннотация: Power dilation systems $\{f(z^k)\}_{k\in\mathbb{N}}$ in Dirichlet-type spaces $\mathcal{D}_t\ (t\in\mathbb{R})$ are treated. When $t\neq0$, it is proved that a system of functions $\{f(z^k)\}_{k\in\mathbb{N}}$ is orthogonal in $\mathcal{D}_t$ only if $f=cz^N$ for some constant $c$ and some positive integer $N$. Complete characterizations are also given of unconditional bases and frames formed by power dilation systems of Dirichlet-type spaces. Finally, these results are applied to the operator theoretic case of the moment problem on Dirichlet-type spaces.

Ключевые слова: power dilation system, Dirichlet-type space, orthogonal system, unconditional basis, frame.

Поступила в редакцию: 16.09.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:3, 439–451


© МИАН, 2025