RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 3, страницы 193–206 (Mi aa1815)

Эта публикация цитируется в 1 статье

Статьи

Functions with small and large spectra as (non)extreme points in subspaces of $H^\infty$

K. M. Dyakonovab

a Departament de Matemàtiques i Informàtica, IMUB, BGSMath, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, Spain
b ICREA, Pg. Lluís Companys 23, E-08010 Barcelona, Spain

Аннотация: Given a subset $\Lambda$ of $\mathbb Z_+:=\{0,1,2,\dots\}$, let $H^\infty(\Lambda)$ denote the space of bounded analytic functions $f$ on the unit disk whose coefficients $\widehat f(k)$ vanish for $k\notin\Lambda$. Assuming that either $\Lambda$ or $\mathbb Z_+\setminus\Lambda$ is finite, we determine the extreme points of the unit ball in $H^\infty(\Lambda)$.

Ключевые слова: bounded analytic functions, spectral gaps, lacunary polynomials, extreme points.

Поступила в редакцию: 12.10.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:3, 453–462


© МИАН, 2024