RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 3, страницы 207–231 (Mi aa1816)

Эта публикация цитируется в 2 статьях

Статьи

Spectral asymptotics for a family of LCM matrices

T. Hilberdinka, A. Pushnitskib

a Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, U.K.
b Department of Mathematics, King's College London, Strand, London, WC2R 2LS, U.K.

Аннотация: The family of arithmetical matrices is studied given explicitly by
$$ E(\sigma,\tau)= \Big\{\frac{n^\sigma m^\sigma}{[n,m]^\tau}\Big\}_{n,m=1}^\infty, $$
where $[n,m]$ is the least common multiple of $n$ and $m$ and the real parameters $\sigma$ and $\tau$ satisfy $\rho:=\tau-2\sigma>0$, $\tau-\sigma>\frac12$, and $\tau>0$. It is proved that $E(\sigma,\tau)$ is a compact selfadjoint positive definite operator on $\ell^2(\mathbb{N})$, and the ordered sequence of eigenvalues of $E(\sigma,\tau)$ obeys the asymptotic relation
$$ \lambda_n(E(\sigma,\tau))=\frac{\varkappa(\sigma,\tau)}{n^\rho}+o(n^{-\rho}),\quad n\to\infty, $$
with some $\varkappa(\sigma,\tau)>0$. This fact is applied to the asymptotics of singular values of truncated multiplicative Toeplitz matrices with the symbol given by the Riemann zeta function on the vertical line with abscissa $\sigma<1/2$. The relationship of the spectral analysis of $E(\sigma,\tau)$ with the theory of generalized prime systems is also pointed out.

Ключевые слова: LCM matrix, arithmetical matrix, multiplicative Toeplitz matrix, eigenvalue asymptotics.

Поступила в редакцию: 25.10.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:3, 463–481


© МИАН, 2024