Эта публикация цитируется в
2 статьях
Статьи
Spectral asymptotics for a family of LCM matrices
T. Hilberdinka,
A. Pushnitskib a Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading, RG6 6AX, U.K.
b Department of Mathematics, King's College London, Strand, London, WC2R 2LS, U.K.
Аннотация:
The family of arithmetical matrices is studied given explicitly by
$$ E(\sigma,\tau)= \Big\{\frac{n^\sigma m^\sigma}{[n,m]^\tau}\Big\}_{n,m=1}^\infty, $$
where
$[n,m]$ is the least common multiple of
$n$ and
$m$ and the real parameters
$\sigma$ and
$\tau$ satisfy
$\rho:=\tau-2\sigma>0$,
$\tau-\sigma>\frac12$, and
$\tau>0$. It is proved that
$E(\sigma,\tau)$ is a compact selfadjoint positive definite operator on
$\ell^2(\mathbb{N})$, and the ordered sequence of eigenvalues of
$E(\sigma,\tau)$ obeys the asymptotic relation
$$ \lambda_n(E(\sigma,\tau))=\frac{\varkappa(\sigma,\tau)}{n^\rho}+o(n^{-\rho}),\quad n\to\infty, $$
with some
$\varkappa(\sigma,\tau)>0$. This fact is applied to the asymptotics of singular values of truncated multiplicative Toeplitz matrices with the symbol given by the Riemann zeta function on the vertical line with abscissa
$\sigma<1/2$. The relationship of the spectral analysis of
$E(\sigma,\tau)$ with the theory of generalized prime systems is also pointed out.
Ключевые слова:
LCM matrix, arithmetical matrix, multiplicative Toeplitz matrix, eigenvalue asymptotics. Поступила в редакцию: 25.10.2021
Язык публикации: английский