Эта публикация цитируется в
1 статье
Статьи
Global pointwise estimates of positive solutions to sublinear equations
I. E. Verbitsky Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
Аннотация:
Bilateral pointwise estimates are provided for positive solutions
$u$ to the sublinear integral equation
$$ u = \mathbf{G}(\sigma u^q) + f \textrm{ in } \Omega, $$
for
$0 < q < 1$, where
$\sigma\ge 0$ is a measurable function or a Radon measure,
$ f \ge 0$, and
$\mathbf{G}$ is the integral operator associated with a positive kernel
$G$ on
$\Omega\times\Omega$. The main results, which include the existence criteria and uniqueness of solutions, hold true for quasi-metric, or quasi-metrically modifiable kernels
$G$. As a consequence, bilateral estimates, are obtained, along with existence and uniqueness, for positive solutions
$u$, possibly unbounded, to sublinear elliptic equations involving the fractional Laplacian,
$$ (-\Delta)^{\frac{\alpha}{2}} u = \sigma u^q + \mu \textrm{ in } \Omega, u=0 \textrm{ in } \Omega^c, $$
where
$0<q<1$, and
$\mu, \sigma \ge 0$ are measurable functions, or Radon measures, on a bounded uniform domain
$\Omega \subset \mathbb{R}^n$ for
$0 < \alpha \le 2$, or on the entire space
$\mathbb{R}^n$, a ball or half-space, for
$0 < \alpha <n$.
Ключевые слова:
sublinear equations, quasi-metric kernels, Green's kernel, weak maximum principle. Поступила в редакцию: 25.10.2021
Язык публикации: английский