Аннотация:
В данной работе метод обратной спектральной задачи применяется для интегрирования нелинейного уравнения Хирота в классе периодических бесконечнозонных функций. Вводится эволюция спектральных данных периодического оператора Дирака, коэффициент которого является решением нелинейного уравнения Хирота. Показана разрешимость задачи Коши для бесконечной системы дифференциальных уравнений Дубровина в классе пять раз непрерывно дифференцируемых периодических бесконечнозонных функций. Кроме того доказано, что если начальная функция является действительной $\pi$-периодической аналитической функцией, то и решение задачи Коши для уравнения Хирота тоже является вещественной аналитической функцией по переменной $x$; а если число $\pi/2$ является периодом (антипериодом) начальной функции, то число $\pi/2$ является периодом (антипериодом) по переменной $x$ решения задачи Коши для уравнения Хирота.