RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2022, том 34, выпуск 6, страницы 135–169 (Mi aa1838)

Эта публикация цитируется в 2 статьях

Статьи

Triangulated categories of framed bispectra and framed motives

G. Garkushaa, I. Paninb

a Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, UK
b St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023, St. Petersburg, Russia

Аннотация: An alternative approach to classical Morel–Voevodsky stable motivic homotopy theory $SH(k)$ is suggested. The triangulated category of framed bispectra $SH_{\mathrm{nis}}^{\mathrm{fr}}(k)$ and effective framed bispectra $SH_{\mathrm{nis}}^{\mathrm{fr},\mathrm{eff}}(k)$ are introduced in the paper. Both triangulated categories only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences. It is shown that $SH_{\mathrm{nis}}^{\mathrm{fr}}(k)$ and $SH_{\mathrm{nis}}^{\mathrm{fr},\mathrm{eff}}(k)$ recover classical Morel–Voevodsky triangulated categories of bispectra $SH(k)$ and effective bispectra $SH^{\mathrm{eff}}(k)$ respectively.
Also, $SH(k)$ and $SH^{\mathrm{eff}}(k)$ are recovered as the triangulated category of framed motivic spectral functors $SH_{S^1}^{\mathrm{fr}}[\mathcal{F}r_0(k)]$ and the triangulated category of framed motives $\mathcal{SH}^{\mathrm{fr}}(k)$ constructed in the paper.

Ключевые слова: motivic homotopy theory, framed motives, triangulated categories.

Поступила в редакцию: 10.07.2022

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2023, 34:6, 991–1017


© МИАН, 2024