Аннотация:
We study a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential $V(n)=\lambda n^{-\alpha}\cos(\pi \omega n^\beta)$ with $1<\beta<2\alpha$, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.
Ключевые слова:spectrum, almost Mathieu operator, Laplacian.