RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2023, том 35, выпуск 1, страницы 304–320 (Mi aa1856)

Статьи

Discrete Schrödinger operators with decaying and oscillating potentials

R. L. Frankabc, S. Larsonde

a Mathematisches Institut, Ludwig-Maximilians Universität München, Theresienstr. 39, 80333 München, Germany
b Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
c Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
d University of Gothenburg, SE-41296 Gothenburg, Sweden
e Mathematical Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden

Аннотация: We study a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential $V(n)=\lambda n^{-\alpha}\cos(\pi \omega n^\beta)$ with $1<\beta<2\alpha$, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.

Ключевые слова: spectrum, almost Mathieu operator, Laplacian.

Поступила в редакцию: 11.08.2021

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 2024, 35:1, 233–244


© МИАН, 2024