RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2023, том 35, выпуск 2, страницы 107–173 (Mi aa1861)

Эта публикация цитируется в 3 статьях

Статьи

Операторные оценки при усреднении эллиптических операторов высокого порядка с периодическими коэффициентами

В. А. Слоущ, Т. А. Суслина

Санкт-Петербургский государственный университет, Университетская наб., д. 7/9, Санкт-Петербург, 199034, Россия

Аннотация: В $L_2(\mathbb{R}^d;\mathbb{C}^n)$ изучается сильно эллиптический самосопряженный дифференциальный оператор ${\mathcal A}_\varepsilon$ порядка $2p$ с периодическими коэффициентами, зависящими от $\mathbf{x}/\varepsilon$. Получена аппроксимация резольвенты $( {\mathcal A}_\varepsilon+I)^{-1}$ по операторной норме в $L_2(\mathbb{R}^d;\mathbb{C}^n)$:
$$ ( {\mathcal A}_\varepsilon+I)^{-1} = ( {\mathcal A}^0+I)^{-1} + \sum_{j=1}^{2p-1} \varepsilon^{j} {\mathcal K}_{j,\varepsilon} + O(\varepsilon^{2p}). $$
Здесь ${\mathcal A}^0$ — эффективный оператор с постоянными коэффициентами, а операторы ${\mathcal K}_{j,\varepsilon}$, $j=1,\dots,2p-1$, — подходящие корректоры.

Ключевые слова: периодические дифференциальные операторы, теория усреднения, операторные оценки погрешности, эффективный оператор, корректоры.

Поступила в редакцию: 29.01.2023


 Англоязычная версия: St. Petersburg Mathematical Journal, 2024, 35:2, 327–375


© МИАН, 2024