RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2024, том 36, выпуск 2, страницы 131–160 (Mi aa1913)

Статьи

A lower bound for the curvature integral under an upper curvature bound

T. Fujioka

Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan

Аннотация: It is proved that the integral of the scalar curvature over a Riemannian manifold is uniformly bounded below in terms of its dimension, upper bounds on the sectional curvature and volume, and a lower bound on the injectivity radius. This is an analog of an earlier result of Petrunin for Riemannian manifolds with sectional curvature bounded below.

Ключевые слова: sectional curvature, scalar curvature, Gromov–Hausdorff convergence, GCBA spaces, strainers.

Поступила в редакцию: 23.12.2023

Язык публикации: английский



© МИАН, 2024