RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2024, том 36, выпуск 3, страницы 45–61 (Mi aa1917)

Статьи

On the asymptotic behavior in time of the kinetic energy in a rigid body–liquid problem

G. P. Galdia, P. Maremontib

a 607 Benedum Engineering Hall, University of Pittsburgh, Pittsburgh, PA 15261
b Dipartimento di Matematica e Fisica, Universitá degli Studi della Campania “Luigi Vanvitelli”, via Vivaldi, 43 – 81100 Caserta, Italy

Аннотация: Sufficient conditions on the initial data are given for the decay in time of the kinetic energy, $E$, of solutions to the system of equations describing the motion of a rigid body in a Navier–Stokes liquid. More precisely, under the assumption the initial data are “small” in an appropriate norm, it is shown that if, in addition, the initial velocity field of the liquid, $v_0$, is in $L^q$, $q\in(1,2)$, then $E(t)$ vanishes as $t\to\infty$ with a specific order of decay. The order remains, however, unspecified if $v_0\in L^2$.

Ключевые слова: rifid body, coupled system, Navier–Stokes liquid, external forses, kinetic energy.

Поступила в редакцию: 12.02.2024

Язык публикации: английский



© МИАН, 2024