Аннотация:
The Fock bundle is an Hermitean vector bundle over Siegel's generalized upper halfplane, the fibers of which can be realized as Hilbert spaces of entire functions. In this paper a “periodic” version of the Fock bundle is constructed, that is, we factor the fibers of the (usual) Fock bundle by a maximal isotropic discrete subgroup of the underlying symplectic vector space. Applications to theta functions are obtained. In fact, it is our intention to work out, in a subsequent publication, major parts of the classical theory of theta functions on the basis ofthe corresponding “doubly periodic” object, obtained by instead factoring by a symplectic lattice.