RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 1991, том 3, выпуск 5, страницы 135–154 (Mi aa282)

Эта публикация цитируется в 1 статье

Статьи

The periodic Fock bundle

Jaak Peetre

Stockholm University

Аннотация: The Fock bundle is an Hermitean vector bundle over Siegel's generalized upper halfplane, the fibers of which can be realized as Hilbert spaces of entire functions. In this paper a “periodic” version of the Fock bundle is constructed, that is, we factor the fibers of the (usual) Fock bundle by a maximal isotropic discrete subgroup of the underlying symplectic vector space. Applications to theta functions are obtained. In fact, it is our intention to work out, in a subsequent publication, major parts of the classical theory of theta functions on the basis ofthe corresponding “doubly periodic” object, obtained by instead factoring by a symplectic lattice.

Ключевые слова: Fock space, Heisenberg group, Siegel's generalized upper halfplane, reproducing kernel, theta function, Hermitean vector bundle, connection.

Поступила в редакцию: 15.03.1991

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 1992, 3:5, 1069–1088

Реферативные базы данных:


© МИАН, 2024