RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 1993, том 5, выпуск 2, страницы 211–217 (Mi aa385)

Статьи

A canonical anti-isomorphism of matrix Hecke rings

S. Raghavan

Tata Institute of Fundamental Research

Аннотация: In the case of abstract Hecke rings $D(\Gamma,\mathbf S)$ associated with a Hecke pair $(\Gamma,\mathbf S)$ for a multiplicative group ([2], §  3.1), there exists a canonical anti-isomorphism taking a double coset $\Gamma g\Gamma$ for $g$ in $\mathbf S$ to the double coset $\Gamma g^{-1}\Gamma$. Anti-automorphisms in Hecke rings are of interest, since, under suitable conditions, they imply the commutativity of these rings. In a recent paper [1] on the multiplicative properties of integral representations of quadratic forms by quadratic forms, Andrianov has defined an abstract matrix Hecke ring, motivated by his concept of the ring of classes of automorphs of a given system of quadratic forms. The object of this note is to seek an answer to a natural question raised by him on the existence of a canonical anti-isomorphism in the case of these abstract matrix Hecke rings.

Ключевые слова: Hecke pair, Hecke ring, matrix Hecke ring, canonical anti-isomorphism.

Поступила в редакцию: 24.04.1992

Язык публикации: английский


 Англоязычная версия: St. Petersburg Mathematical Journal, 1994, 5:2, 407–413

Реферативные базы данных:


© МИАН, 2024