RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и анализ // Архив

Алгебра и анализ, 2008, том 20, выпуск 5, страницы 109–154 (Mi aa533)

Эта публикация цитируется в 2 статьях

Статьи

О разрешимости задачи Неймана в области с пиком

В. Г. Мазьяa, С. В. Поборчийb

a Department of Mathematics, Linköping University, Linköping, Sweden
b С.-Петербургский государственный университет, математико-механический факультет

Аннотация: Рассматривается задача Неймана для эллиптического квазилинейного уравнения второго порядка в многомерной области с вершиной пика на границе. При определённых условиях исследование разрешимости задачи Неймана сводится к описанию пространства, сопряжённого к пространству Соболева $W^1_p(\Omega)$, $1<p<\infty$ или (в случае однородного уравнения с неоднородным краевым уcловием) к описанию пространства, сопряжённого к пространству $TW^1_p(\Omega)$ граничных следов функций из класса $W^1_p(\Omega)$. Упомянутые сопряжённые пространства характеризуются в терминах классов Соболева с отрицательными показателями гладкости на липшицевых областях или липшицевых поверхностях, а также в терминах некоторых весовых классов функций на интервале $(0,1)$ числовой оси. Доказательство основных результатов базируется на известном явном описании пространств $TW^1_p(\Omega)$ в области с вершиной внешнего или внутреннего пика на границе.

Ключевые слова: задача Неймана, пространства Соболева, области с пиками, граничные следы, сопряжённые пространства.

MSC: 35J25

Поступила в редакцию: 14.01.2008


 Англоязычная версия: St. Petersburg Mathematical Journal, 2009, 20:5, 757–790

Реферативные базы данных:


© МИАН, 2024